Uğur Yağmur **Yavuz**

PhD Student in Computer Science

Education

- 2022-present Ph.D. in Computer Science, Boston University, Boston, MA Advisor: Marco Gaboardi and Alley Stoughton. Expected graduation: 2027.
 2021-2022 M.S. in Computer Science, Dartmouth College, Hanover, NH
 - GPA: 4.00/4.00. Advisor: Prasad Jayanti. Thesis: A Machine-Verified Proof of Linearizability for a Queue Algorithm.
 - 2017–2021 A.B. in Computer Science and Mathematics, Dartmouth College, Hanover, NH GPA: 3.97/4.00.
 Graduated summa cum laude and inducted into Phi Beta Kappa.
 Awarded High Honors in Computer Science for senior thesis.
 - 2012–2017 **Baccalauréat (Franco-Turkish diploma)**, *Lycée de Galatasaray*, Istanbul, Turkey Ranked in the top 0.0001% in the nationwide high school entrance exam

Research interests

Formal verification, concurrent data structures, distributed systems, proof assistants (e.g., Coq, TLA+/TLAPS, EasyCrypt)

Publications

Submitted

Ugur Yavuz (first author), with collaborators. "Formal Machine-Verification of MemSnap: an Efficient, Far-Future Linearizable Snapshot Algorithm." Submitted to *SPAA 2025*.

Ugur Yavuz (second author), with collaborators. "Mechanized Metatheory of Forward Reasoning for End-to-End Linearizability Proofs." Submitted to *ITP 2025*.

Conferences

[POPL '24] Prasad Jayanti, Siddhartha Jayanti, Ugur Yavuz, Lizzie Hernandez. "A Universal, Sound, and Complete Forward Reasoning Technique for Machine-Verified Proofs of Linearizability." 51st ACM Symposium on Principles of Programming Languages, 2024. [PDF] [Talk] [Code]

Workshops

[HOPC '24] Prasad Jayanti, Siddhartha Jayanti, **Ugur Yavuz**, Lizzie Hernandez. "Meta-Configuration Tracking for Machine-Certified Correctness of Concurrent Data Structures." *ACM Workshop on Highlights of Parallel Computing*, 2024. [DOI]

Theses

- [M.S. Thesis] Ugur Y. Yavuz. "A Machine-Verified Proof of Linearizability for a Queue Algorithm." Dartmouth College, Master's Thesis, 2022. [PDF] [Talk]
- [A.B. Thesis] Ugur Y. Yavuz. "Producing Easy-to-Verify Proofs of Linearizability." Dartmouth College, Honors Thesis (awarded High Honors), 2021. [PDF]

Research experience

2022-present Ph.D. Researcher, Boston University, Boston, MA

Conducting research in concurrent algorithms and formal verification. Current projects include:

- O Developing a proof technique for linearizability and strong linearizability, culminating in a POPL'24 paper.
- Implementing this technique, *meta-configuration tracking*, in the TLA⁺ Proof System (TLAPS).
- Verifiably proving linearizability of several high-performance concurrent data structure implementations, including ParlayHash, MemSnap, and the Jayanti-Tarjan union-find algorithm.
- Formalizing linearizability as a UC-style security property using EasyUC.
- O Collaborating on cyclic proof frameworks for relational Hoare logic, fully mechanized in Coq.

06/2024- Student Researcher, Google, Cambridge, MA

- 08/2024 PhD student researcher on the Graph Mining team at Google.
 - Analyzed ParlayHash, a high-performance concurrent hash table, and formally proved its strong linearizability using TLAPS, with the help of the meta-configuration tracking technique.
 - The proof was contributed as a reproducible Docker artifact to the open-source ParlayHash repository.
 - Received a **Platinum Healthy's Award** (Q3 2024) and a **Gold Healthy's Award** (Q1 2025) for my contributions.

2021–2022 Graduate Researcher, Dartmouth College, Hanover, NH

Conducted research under the supervision of Prasad Jayanti.

- O Developed a machine-verified proof of the Herlihy-Wing queue algorithm in TLAPS.
- Work culminated in a master's thesis and laid the foundation for the proof technique later published at POPL'24.

06/2022- Researcher, Microsoft, Remote

- 08/2022 Conducted static analysis research, contracted through WaferWire Cloud Technologies.
 - Developed a Python tool to extract bug patching metadata from open-source C# repositories, contributing to the InferFix end-to-end program repair framework.
 - Extended the Infer static analysis tool using OCaml.
- 06/2020- Research Intern, ISI @ USC, Marina del Rey, CA (Remote due to COVID-19)
- 08/2020 Conducted NLP research under the supervision of Prof. Jon May, focusing on low-resource Mayan languages.
 - Created multilingual corpora for Mixtec and Kanjobal languages using web scraping and OCR tools.
 - Explored ways to improve translation pipelines for legal testimonial documents using deep learning techniques in Python, via domain adaptation.

Teaching Experience

2024 Teaching Fellow, Boston University, Boston, MA

Course: Fundamentals of Cryptography (CS 538).

Led weekly discussion sections, held office hours, and graded exams and assignments. Supported students in understanding cryptographic primitives and proofs.

2019–2022 Teaching Assistant, Dartmouth College, Hanover, NH

Courses: Algorithms, Concurrent Algorithms, Discrete Mathematics, and Software Design and Implementation. Held office hours, graded assignments and exams, and mentored students on course projects.

Honors & Awards

2025 Fellowship to attend the Oregon Programming Languages Summer School (OPLSS).

2025 Gold Healthy's Award (Q1), Google

For mechanized linearizability proof of ParlayHash

2024 Platinum Healthy's Award (Q3), Google

For the development and successful deployment of meta-configuration tracking to verify the Jayanti-Tarjan union-find algorithm

- 2022 Dean's Fellowship, Boston University.
- 2021 Graduated summa cum laude and inducted into Phi Beta Kappa.
- 2021 Senior thesis awarded High Honors by the Dartmouth Computer Science Department.

Service

- Artifact reviewer for PLDI 2025.
- O Organizer for OPLSS 2024 at Boston University.
- Online session chair for LICS 2023.
- O Mentored multiple undergraduate researchers on using TLAPS for mechanized proofs.

Technical Skills

Languages and proof assistants:

- Advanced: LATEX, Python, TLA+/TLAPS
- o Intermediate: Coq, EasyCrypt, OCaml, SML
- o Familiar: C, Java, SQL

Tools: Docker, Git, VSCode

Languages

- **O Turkish:** native
- English: fluent (C2)
- **French**: fluent (C1)
- Italian: conversational